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A Duality Principle for the
Legendre Transform

Goran Peskir

We present a duality principle for the Legendre transform that yields the
shortest path between the graphs of functions and embodies the underlying Nash
equilibrium. A useful feature of the algorithm for the shortest path obtained in
this way is that its implementation has a local character in the sense that it is
applicable at any point in the domain with no reference to calculations made
earlier or elsewhere. The derived results are applied to optimal stopping games of
Brownian motion and diffusion processes where the duality principle corresponds
to the semiharmonic characterisation of the value function.

1. Introduction

The purpose of the present paper is to formulate and explain a duality principle for the
Legendre transform that yields the shortest path between the graphs of functions and embodies
the underlying Nash equilibrium. We also explain a canonical role of the von Neumann minimax
theorem in this context as well as draw some loose parallels with Fenchel’s duality theorem.
Unlike the latter theorem, however, the duality principle described below applies to graphs of a
very general nature and requires no assumption of convexity or concavity. Another interesting
feature of the algorithm for the shortest path obtained in this way is that its implementation
has a local character in the sense that it is applicable at any point in the domain with no
reference to calculations made earlier or elsewhere. In essence this is a consequence of the fact
revealed by the duality principle that finding the shortest path between the graphs of functions
is equivalent to establishing a Nash equilibrium.

The motivation for the developments indicated above comes from optimal stopping problems
but could be equivalently restated in the language of free boundary problems. A fundamental
result in the optimal stopping theory for a strong Markov process X states that the value
function V of the optimal stopping problem

A

(1.1) V(z) = sup E.G(X,)

is the smallest superharmonic function that lies above the gain function G, and likewise the
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value function V' of the optimal stopping problem
(1.2) V(x) = inf E, H(X,)

is the largest subharmonic function that lies below the loss function H . This result dates
back to Dynkin [3] and was derived in parallel to the general supermartingale or submartingale
characterisation due to Snell [22] (for more details see e.g. [16]). The characterisation leads to
the familiar picture where V is identified with a rope put above the obstacle G having both
ends pulled to the ground (see [15, Figure 1)), and likewise V is identified with a rope put
below the obstacle H having both ends pulled to the sky. Both pictures refer to the case when
X is a standard Brownian motion (absorbed at the end points of the interval).

A well-known minimax version of (1.1) and (1.2) is obtained by considering the optimal
stopping game where the sup-player chooses a stopping time 7 to maximise, and the inf-player
chooses a stopping time ¢ to minimise, the expected payoff

(1.3) M, (7,0) = E, [G(XT) I(t<o)+ H(X,)I(o<T)+ K(XT)](T:a)}
where G < K < H . Defining the upper value and the lower value of the game by

(1.4) V*(z) =infsupM,(7,0) & Vi (z)=supinfM,(r,0)

one distinguishes (i) Stackelberg equilibrium, meaning that V*(z) = Vi (x) for all z, so that
(1.5) Vi=Vt=V,

unambiguously defines the value of the game, and (ii) Nash equilibrium, meaning that there
exist stopping times 7, and o, such that M,(7,0,) < My (7., 0.) < My(7,,0) forall 7 and o
and all z (in other words (7., 0,) is a saddle point). It is easily seen that the Nash equilibrium
implies the Stackelberg equilibrium with V(x) = M, (7., 0,) for all = . A variant of the optimal
stopping game above was first studied by Dynkin [5] using martingale methods similar to those
of Snell [22] (for more details see [7] and the references therein).

If we formally set H = 400 in (1.3) then the optimal stopping game (1.4) reduces to the
optimal stopping problem (1.1) and hence the value function V = V admits the superharmonic
characterisation. Likewise, if we formally set G = —oo in (1.3) then the optimal stopping
game (1.4) reduces to the optimal stopping problem (1.2) and hence the value function V =V
admits the subharmonic characterisation. The question of the semiharmonic characterisation
in the general case (when G and H are finite valued) was recently considered in [15]. It
was shown there that letting V denote the smallest superharmonic function lying between G
and H , and letting V' denote the largest subharmonic function lying between G and H ,
we have V =V if and only if the Nash equilibrium holds (see Section 2 for fuller details).
This equivalence indicates that finding the value function V' is the same as ‘pulling a rope’
between ‘two obstacles’ (see [15, Figure 2]) which in turn is equivalent to establishing a Nash
equilibrium (a formal proof of these claims will be given below).

The main objective of the present paper is to connect the semiharmonic characterisation
of the value function with the Legendre transform in the variational sense of Mandelbrojt and



Fenchel (see Section 3 for definitions and further details). Letting F* denote the concave
conjugate of F' it is well known that the concave biconjugate

(1.6) F7*(p) = inf sup [a(p—y) + F(y)]

defines the smallest concave function above F' . Likewise, letting F, denote the convexr con-
jugate of F it is well known that the convex biconjugate

(1.7) Fu.(p) = sup inf [z(p—y)+F(y)]

defines the largest convezr function below F' . Returning to the optimal stopping problems (1.1)
and (1.2) this means that

(1.8) V=G" & V=H,

when X is a standard Brownian motion (absorbed at the end points of the interval). The
central question to be examined in this paper is whether/how the biconjugate representations
(1.8) extend to the setting of the optimal stopping game (1.4) (where obtaining equality between
V and V is equivalent to establishing a Nash equilibrium).

To answer this question we first show in Section 3 that the Legendre transform admits a
dual (geometric/analytic) interpretation for assigning its value at a point. We then show in
Section 4 that this interpretation extends to a pair of functions via the duality relation
(1.9) inf sup [z(p—y)+G(y)] =sup inf [z(p—y)+H(y)]

T yeAH (z) z yeAl(z)
where AM(x) and AZ(z) are admissible sets and the joint value equals V(p). We finally
show in Section 5 that this value represents the shortest path (geodesic) between the graphs of
G and H . The duality relation itself shows that finding the shortest path between the graphs
of functions is equivalent to establishing a Nash equilibrium.

The dual (geometric/analytic) interpretation of the Legendre transform reveals that the
superharmonic and subharmonic characterisations of the value functions V and V represent
dual problems to the primal problems (1.1) and (1.2) respectively (where sup/inf over all
stopping times in the primal problem becomes inf/sup over all superharmonic/subharmonic
functions above/below G/H in the dual problem). The duality relation (1.9) establishes
the same fact for the semiharmonic characterisation of the value function in the case of the
optimal stopping game (1.4). In this case, due to a full symmetry, the primal and dual problems
merge to form the duality relation itself. These conclusions rest upon the fact that the well-
known duality relationship between points and lines in analysis extends to a duality relationship
between stopping times and value functions in probability.

The results above extend from Brownain motion to more general diffusion processes using
known properties of the fundamental solutions (eigenvalues) to the killed generator equation.
This leads to a complete description of geodesics between the graphs of functions associated with
such processes. More general Markov processes (such as Lévy processes for example) require
separate studies that connect their geodesics to straight lines (i.e. convexity and/or concavity)
and these will be undertaken elsewhere. Likewise, for the simplicity of the exposition we present
the main results in one dimension only (using the interval [0,1] as a canonical state space).
The scope of the extension to higher dimensions will be briefly indicated through the exposition
of the general Markovian results in Section 2.



2. Semiharmonic characterisation

In this section we present basic definitions and results on the semiharmonic characterisation
of the value function (1.5) that will be used in the proof below.

1. In the setting of the optimal stopping game (1.3)4(1.4) we consider a strong Markov
process X = (X;)i>o defined on a filtered probability space (€, F, (F;)i>0,P:) and taking
values in a measurable space (F,B), where FE is a locally compact Hausdorff space with a
countable base, and B is the Borel o-algebra on FE . It is assumed that the process X starts
at x under P, for x € ' and that the sample paths of X are right-continuous. Recall also
that X is said to be left-continuous over stopping times (quasi-left-continuous) if X, — X,
P.-a.s. whenever 7, and 7 are stopping times such that 7, T 7 as n — oo. It is also
assumed that the filtration (F;);>¢ is right-continuous and that Fy contains all P,-null sets
from FX = o(X; :t > 0). The main example we have in mind is when F;, = o(F* UN)
where F¥ = 0(X,:0<s<t) and N={ACQ:3IBe FX, AC B,P,(B) =0} for
t >0 with F = F, . In addition, it is assumed that the mapping z — P,(F") is (universally)
measurable for each F' € F . Finally, without loss of generality we assume that 2 equals the
canonical space E®®) with X,(w) =w(t) for w € Q and t >0 (for further details of these
hypotheses see [15, Section 2]).

2. Recall that a measurable function F : E — IR is finely continuous (i.e. continuous in the
fine topology) if and only if lim; o F(X;) = F(z) P.,-a.s. for every x € E . This property is
further equivalent to the fact that the sample path ¢ +— F(X;(w)) is right-continuous on IR,
for every w € Q\ N where P,(N) =0 for all z € E. The functions G,H,K : E — IR
satisfying G < K < H in (1.3) are assumed to be finely continuous and uniformly integrable
in the sense that E,sup,.,|F(X;)] < oo where F stands for either G or H . It is also
assumed that lim;r G(X;) = lim;r H(X;) P,-a.s. where the horizon T (the upper bound
for 7 and o in (1.4) above) may be either finite or infinite. Under these hypotheses it was
shown in [7] that if X is right-continuous then the Stackelberg equilibrium holds, and if X
is right-continuous and left-continuous over stopping times then the Nash equilibrium holds.
These general results are further refined as follows.

3. Let F: E — IR be a measurable function, let C' C E be a measurable set, and set
D = FE\C. Let 7p =inf{t > 0: X; € D } be the first entry time of X into D. The
function F' is said to be superharmonic in C if E;F(X,-,) < F(x) for every stopping time
p and all € E. The function F is said to be subharmonic in C if E,F(X,p.,) > F(x)
for every stopping time p and all x € E. The function F' is said to be harmonic in
C if E,F(X,nrp) = F(x) for every stopping time p and all z € E. It is easily verified
using the strong Markov property of (X¢arp,)i>0 and the optional sampling theorem that F' is
superharmonic/subharmonic/harmonic in C if and only if (F(Xiarp))e>0 is a right-continuous
supermartingale/submartingale /martingale under P, whenever F is finely continuous and
satisfies E, sup;sq [F'(Xinrp)| < 00 for z € E.

4. To state the main result we need let us consider the following two families of functions:
(2.1) Sup[G,H) = { F : E — [G, H] is finely continuous and superharmonic in {F <H} }
(2.2) Sub(G,H] = { F : E — |G, H] is finely continuous and subharmonic in {F'>G} }



and let us define the following two functions:

(2.3) V= inf F & V= sup F.

Fesup[G,H) Fesub(G,H|

Note that V represents the smallest superharmonic function lying between G and H , and
V' represents the largest subharmonic function lying between G and H . It follows from the
results in [15] that if X is right-continuous and left-continuous over stopping times then

(2.4) V=V=V.

In fact, when X is right-continuous (and not necessarily left-continuous over stopping times), it
was shown in [15] that V =V ifand only if the Nash equilibrium holds. In this case, however,
the families of functions (2.1) and (2.2) also need to meet the requirement that each F from
(2.1) is superharmonic in {V <H} , and each F' from (2.2) is subharmonic in {V >G} , where
V' is defined by (1.5) above. When X is left-continuous over stopping times (additionally to
being right-continuous) the latter requirement is no longer needed. Indeed, this follows from
the fact derived in the proof in [15, Theorem 1] that any F from (2.1) or (2.2) satisfies
F >V or F < V respectively (while V' belongs to both families). Moreover, setting
D, ={V=G} and Dy ={V=H}, letting 7p, =inf{t > 0: X; € D;} denote the first
entry time of X into D;, and letting op, = inf{t > 0: X; € Dy} denote the first entry
time of X into D, , we then have (see [15, Theorem 1]): (i) The value function V' belongs
to Sup|G, H) N Sub(G, H|; (ii) The first entry times 7p, and op, are Nash optimal in the
sense that M,(7,0p,) < My (7p,,0p,) < My(7p,,0) for all stopping times 7 and ¢ and all
x € E; (i) If 7. and o, are Nash optimal stopping times, then 7p, < 7. P,a.s. and
op, < 0, Pra.s. forall x € E; (iv) The value function V' is subharmonic in C; = {V > G},
i.e. the stopped process (V(Xiarp ))i>0 is a right-continuous submartingale; (v) The value
function V' is superharmonic in Cy = {V < H} , i.e. the stopped process (V(Xirop,))iz0 18
a right-continuous supermartingale; and (vi) The value function V' is harmonic in C; N Cy ,
i.e. the stopped process (V(Xt/\mlAchQ))tZO is a right-continuous martingale.

5. In order to connect these results to the Legendre transform we first consider the case when
either H = 400 or G = —oo in (1.3). This formally corresponds to the optimal stopping
problems (1.1) and (1.2) where the semiharmonic characterisation reduces to the superharmonic
and subharmonic characterisation of the value function respectively. We will see in the next
section that this formalism is helpful since it leads to a dual (geometric/analytic) interpretation
of the Legendre transform which is instrumental in the formulation of the duality principle to
be explained below.

3. Legendre transform

1. The Legendre transform was named after Adrien-Marie Legendre (1752-1833). It repre-
sents an application of the duality relation between points on the graph of a function and its
tangent /supporting lines specified by their slopes and intercept values. In its classical form the
Legendre transform is defined for differentiable (convex/concave) functions F by

(3.1) L[F(p) = prp—F(x,)

5



where z, is determined by solving
(3.2) Fl(a,) =p.

Its best known application (in classical mechanics) states that the Hamiltonian (1833) is a
Legendre transform of the Lagrangian (1788). While in classical/modern physics (Hamilton’s
principle) one is seeking a stationary value of the action (the time integral of the Lagrangian) in
optimal (stochastic) control one is looking for its minimum or maximum. The former leads to
the Euler-Lagrange equations (1740s) and Hamilton’s equations (1830s) while the latter leads to
the Pontryagin maximum principle (1950s). Their connections are obtained by combining the
ideas of Lagrange multipliers with the functional /variational form of the Legendre transform.
These form necessary (and sufficient) conditions for the stationarity /optimality. Sufficient (and
necessary) conditions are obtained by introducing the value function (of the initial point) which
leads to the Hamilton-Jacobi-Bellman equations (1840-1950s). The value function also appears
in problems of optimal stopping and this leads to the Wald-Bellman equations (1940s).

2. In parallel to these global developments Friedrichs [10] introduces the idea of duality in
1929. In its original form this amounts to associating with the primal problem (P) sup, F'(x)
its dual problem (D) inf, G(y) via a judicious choice of the function L such that F(x) =
inf, L(z,y) and G(y) = sup, L(x,y) . The equivalence of the problems (P) and (D) is then
analogous to the statement of a minimax theorem. Combining the ideas of Lagrange multipliers
with the functional/variational form of the Legendre transform this leads to the development
of duality methods in optimal control (see [18]) and optimal stochastic control (see [1]) that
continues to date. The wide scope of these methods requires that the classic definition of
Legendre transform be extended from differentiable (convex/concave) functions to more general
ones. Mandelbrojt [12] and Fenchel [8] postulate such variational extensions of (3.1)4(3.2) that
remain involutive in the class of convex/concave functions. These extended Legendre transforms
are referred to as (convex/concave) conjugate functions of the original function (often they are
also referred to as the Legendre-Fenchel transforms). The conjugate functions play a central
role in the duality methods referred to above.

3. The purpose of the present section is threefold. Firstly, we explain a canonical role of
the von Neumann minimax theorem in the proof of the fact that the (extended) Legendre
transform is involutive at each convex/concave function. (The original derivations of this fact
given by Mandelbrojt and Fenchel are different.) Secondly, we connect this fact to optimal
stopping problems (1.1) and (1.2) by establishing the biconjugate representation for the value
function (1.8) when X is a standard Brownian motion (absorbed at the end points of the
interval) as well as extending the same representation to more general diffusion processes using
known properties of the fundamental solutions (eigenvalues) to the killed generator equation.
Thirdly, motivated by the question whether/how these representations extend to the setting
of the optimal stopping game (1.4) we show that the (extended) Legendre transform admits a
dual (geometric/analytic) interpretation for assigning its value at a point. This will enable us
to formulate a duality principle for the (extended) Legendre transform in the next section and
answer the question stated above.

4. Let F : D(F) — IR be a measurable function whose domain D(F') is a subset of IR .
To simplify the exposition assume that D(F) equals [0,1] and that F is continuous (and



thus bounded). The concave conjugate of F is defined by

(3.3) F*(p) = inf [pz—F(z)]

z€D(F)

for p € IR (see Figure 1). The convez conjugate of F is defined by

(3.4) F.(p) = sup [pz—F(z)]

z€D(F)
for p € IR. The concave biconjugate of F' is defined by

(35) Fep)= e F @] =it sw [2p—y)+Fy)

for p € IR (see Figure 2). The convez biconjugate of F is defined by

(3.6) Fu(p)= sup [pz—F.(z)] =sup inf [2(p—y)+F(y)]

zED(F*) x YED(F)

for p € IR . Basic properties of the conjugate functions may be summarised as follows:

(3.7) F* & F** are concave and F, & F,, are convex
(3.8) F..(p) < F(p) < F*(p) for all p € D(F)

(3.9) F<G = F"<G" and F,, <(d,.

(3.10) F concave = F** =F

(3.11) F convex = F,,=F

where G is any other function of the same kind as F . While the properties (3.7)-(3.9) are
evident from definitions, the involutive properties (3.10) and (3.11) form a key duality relation
established by Mandlebrojt [12] and Fenchel [8].

5. To present another proof of (3.10) and (3.11) recall that the von Neumann minimaz
theorem [13] states: If K C IR" and L C IR™ are compact and convex sets, and a continuous
function f : KxL — IR satisfies (i) « — f(x,y) is concave on K for every fixed y € L
and (ii) y +— f(x,y) is convex on L for every fixed = € K , then there exists a saddle point
(T4,yx) € KXL for f in the sense that f(z,y.) < f(z.,ys) < f(zy,y) forall (z,y) € KXL .
From this it follows in particular that sup,c inf,cy, f(z,y) = infyer sup,er f(2,v) = f(z4, i)
(i.e. the sup and inf commute).

Replacing F' by —F in (3.5) it is easily seen that (3.10) reduces to (3.11). To derive (3.11)
we may note that the following inequality is always satisfied

3.12 F..(p) = inf — F < inf — F =F

(3.12) () =sup inf |e(p—y)+F@)] < inf sup [¢(p—y)+F(y)] = F@)

for p € D(F) where the infimum in the final equality is attained at y = p since otherwise
the supremum over all z would be 400 . The implication (3.11) therefore reduces to showing
that the inequality in (3.12) is an equality (i.e. the sup and inf commute). Setting f(z,y) =
x(p—y)+F(y) we see that all hypotheses of the von Neumann minimax theorem are satisfied

7



but one ( IR is not compact). Replacing the supremum over all x by the supremum over all
x € [-n,n] and applying the von Neumann minimax theorem in this setting we find

(3.13) Fo(p) = lim sup inf [z(p—y)+F(y)]

n—00 ye—n,n] YED(F)

= lim inf su z(p—y)+F
n—o0 yeD(F) :EE[f}l),n][ (p y> (y)}

— 1. . f _ F
Jim inf - [nlp—yl+F(y)]

— lim [nlp—snl+ F()] = F(0)

where the final equality follows from the fact that the (approximate) minima points y, must
converge to p since otherwise the ‘penalisation’ term n|p—1y,| would explode as n — oo .
Note also that n|p—y,| cannot converge to a strictly positive number since then (3.13) would
violate the inequality in (3.12). This completes the proof of (3.11).

6. The train of thought just exposed can also be applied in more general settings where
the concave/convex conjugates make sense. We refer to [21] and the references therein for
further extensions of the von Neumann minimax theorem that may be useful in this context.
Omitting further details in this direction we now turn to the following well-known corollary
which establishes a remarkable link between the Legendre transform and optimal stopping in
Theorem 3.1 below. Assuming that F': D(F') — IR is measurable (and bounded) where D(F)
is a (compact and convex) subset of IR we have:

(3.14) F** is the smallest concave function that lies above F';
(3.15) F,. is the largest convex function that lies below F'.
Indeed, if G is a concave function such that G > F' on D(F), then by (3.9) and (3.10) we

have G** > F** and G** = G, so that G > F** on D(F). The claim (3.14) then follows
by (3.7) and (3.8). The claim (3.15) can be derived analogously.

Theorem 3.1. Consider the optimal stopping problems (1.1) and (1.2) where X is a
standard Brownian motion in [0,1] absorbed at either 0 or 1, the functions G :[0,1] — IR
and H :[0,1] — IR are measurable (and bounded), and the supremum and infimum are taken
over all stopping times 7 of X . Then

(3.16) V=G" & V=~H,

i.e. the value function can be identified as the concave/conver biconjugate of the gain/loss
function. More explicitly, this reads

(3.17) V(p) = inf up [e(p=y)+G)]
(3.18) Vi(p) = sup inf [z(p—y)+H(y)]

for any p € [0,1] given and fized.



Proof. It is well known and easily verified (using Jensen’s inequality and the optional sam-
pling theorem) that superharmonic/subharmonic functions of X coincide with concave/convex
functions (recall that a measurable function F' : [0,1] — IR is superharmonic/subharmonic if
E.F(X,) issmaller/larger than F(x) for all stopping times 7 of X and all z € [0,1] ). It is
also well known that the value function V' is concave and the value function V is convex (see
e.g. (2.5) in [14] for a standard argument dating back to [6, p. 115]). Since each superharmonic
function above G remains above V as well, and each subharmonic function below H remains
below V as well, we see by (3.14) and (3.15) that (3.16) holds as claimed. From (3.14) and
(3.15) we also see that (3.16)-(3.18) embody the classic superharmonic/subharmonic charac-
terisation of the value function (see Chapter 1 in [16] and the references therein). An early
proof of the latter fact in the case of standard Brownian motion is given in [6, pp. 112-126].
One may note that the ‘non-negativity’ of the concave majorant is not needed in this proof
and the statement of this fact (see Figure 28 on p. 115 in [6] and the claim following it) unless
both G(0) >0 and G(1) > 0. The extra requirement appears to be rooted in the implication
(stated on p. 100 in [6]) that if G < 0 then it is never optimal to stop (and thus V = 0).
A possible way of interpreting the latter conclusion is to assume that 0 and 1 are killing
boundary points (not belonging to the state space) so that G is set to be zero at 0 and 1 by
the usual (cemetery) convention. In this case, however, it is clear that V cannot be seen as
the shortest path from G(0) to G(1) lying above G unless both G(0) =0 and G(1) =0
(assuming that G is continuous). O

The biconjugate representations (3.17) and (3.18) extend from Brownian motion to more
general diffusion processes using known properties of the fundamental solutions (eigenvalues)
to the killed generator equation. Focusing only on the case when the boundaries are absorbing
and leaving other cases to similar arguments this can be done as follows.

7.Let X = (X;)i>0 be a regular diffusion process in [0, 1] absorbed at either 0 or 1, and
let A > 0 be given and fixed. Consider the optimal stopping problems

~

(3.19) V(z) =sup E,e™G(X,) & V(z)=infE,eH(X,)

for z € [0,1], where G : [0,1] — IR and H : [0,1] — IR are measurable (and bounded)
functions, and the supremum and infimum are taken over all stopping times 7 of X . Let Ly
be the infinitesimal generator of X | and let ¢ and 1 be continuous solutions to

(3.20) LyF = \F

on [0,1] such that ¢ is increasing with ¢(0) > 0 and 1 is decreasing with (1) > 0. It is
well known that such solutions exist (possibly in a generalised sense) and that they are unique
up to a multiplicative constant. Recall also that under regularity conditions we have

(3.21) LxF(x) = p(x)F'(z) + D(x)F"(x)

for z € (0,1) where p € IR is the drift and D > 0 is the diffusion coefficient of X (see e.g.
[2, Chapter 2] and [11, Section 4.6]). Note that when A =0 we can take ¢ =S and ¢ =1
where S is the scale function of X .



Theorem 3.2. Consider the optimal stopping problems (3.19), and let ¢ and 1) be the
solutions to (3.20) defined above. Then

(3.22) V() =it sup 2[2(0) - £(0)]+Sw)|wp)
=inf sup [a[£(0)~ )]+ £0) ] 0)
(3.23) Vip)=sup inf [2[20)~ 5]+ )] vw)

=sup inf [[£0)~£0)] +2()]o(0)

for any p € [0,1] given and fized.

Proof. It is well known (see [4, Theorem 16.4]) that A-superharmonic/subharmonic func-
tions F of X can be characterised by the condition that F/v is (¢/1)-concave/convex
or equivalently that F/¢ is (—v/p)-concave/convex (recall that a measurable function F :
[0,1] — IR is A-superharmonic/subharmonic if E,e *F(X,) is smaller/larger than F(z)
for all stopping times 7 of X and all = € [0,1] ). While the necessity of the latter condition
is easily verified by taking 7 in the preceding definition to be the first exit time of X from a
bounded interval, the sufficiency can be verified by a direct argument as follows. By Jensen’s
inequality and the optional sampling theorem we have

(3.24) E, e MF(X,) = E, e M 0(X,) (F/v)o(X,)
= ¢<x> E. (F/v)o(o/) " o(p/v)(X-)
V(@) (F/v)o(p/v) ™ (Ea (0/0)(X5))
= () (F/y)o (/1) ((1/¢(x) B e p(X))
= (@) (F/P)o(p/P) " ((¢/¥)(x)) = F(x)

where we use that E,e *(X,) = ¢(x) and E,e Mp(X,) = ¢(x) [since (e (X))o
and (e Mp(X;))=o are (bounded) martingales] and E, denotes the expectation under the
probability measure defined by P,(A) = (1/¢(2))Ey14e *)(X,) for A belonging to the
o-algebra where P, is defined. This verifies the sufficiency in the case of A-superharmonic
functions, and in the case of A-subharmonic functions the inequality only needs to be reversed.
Moreover, it is also well known that the re-scaled value function V /1 is (p/t)-concave and the
re-scaled value function V /¢ is (p/4)-convex (see e.g. (2.7) in [20] for a standard argument
dating back to [6, p. 115]). Since each A-superharmonic function above G remains above
V as well, and each A-subharmonic function below H remains below H as well, we see
that (3.17) is applicable to (V /1) o (p/¥)™* and (G/¢)o(¢/¢)! in place of V and G
respectively, and (3.18) is applicable to (V/1)o(@/¢)~" and (H/v)o(¢/v)~" in place of
V and H respectively. It can then be verified using direct calculations that this yields the
representations (3.22) and (3.23). From these implications we also see that (3.22) and (3.23)
embody the classic superharmonic/subharmonic characterisations of the value functions (see
Chapter 1 in [16] and the references therein). O
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Remark 3.3. If the functions G and H in Theorems 3.1 and 3.2 are continuous, then
the first entry times of the process X into the closed sets {V =G} and {V =H} are optimal
(i.e. the supremum and infimum are attained at these stopping times). This can be derived
using standard optimal stopping techniques (see e.g. [16, Corollary 2.9]). The main focus of
Theorems 3.1 and 3.2 rests on establishing the variational (deterministic) representations for
V and V bearing in mind that this also yields the optimal stopping times.

Remark 3.4. We assumed in Theorems 3.1 and 3.2 that the state space of the process X
equals [0, 1] for simplicity and the results of these theorems extend to more general state spaces
(bounded or unbounded) using similar arguments. The same remark applies to the boundary
behaviour of the process X at the ‘end’ of the state space. It should be noted, however, that
not every boundary behaviour leads immediately to the same conclusions. For example, if the
boundary point 0 is a point of normal/instantaneous reflection for the process X , then the
value function V is no longer the smallest concave function above G . In this case, however,
one can extend the (old) state space [0,1] to a (new) state space [—1,1] by symmetry and
apply the results of Theorem 3.1 to the (new) evenly extended G and X . The restriction
of the resulting (new) value function to [0,1] is then the (old) value function in the initial
problem. Similarly, if the state space of X equals IR, then quite often e MG(X;) — 0 as
t — oo so that the boundary behaviour at the ‘end’ of time is reminiscent of the absorbtion
at 0 or 1 and the same conclusions as in Theorems 3.1 and 3.2 can be drawn (given that
other technical /boundedness conditions are satisfied). This can also be done in the absence of
such limiting conditions if a fuller attention is given to the technical/boundedness conditions
themselves. As this programme appears to be clear and no crucial insight is to be gained from
the increased generality itself we shall omit further details in this direction.

We now turn to the question whether/how the biconjugate representations (3.17)4(3.18)
and (3.22)4(3.23) extend to the setting of the optimal stopping game (1.4). A closer analysis
of this question has revealed that the Legendre transform admits a dual (geometric/analytic)
interpretation for assigning its value at a point that will now be described.

8. Dual interpretation. Consider the concave conjugate function F* defined in (3.3) above
(where D(F') equals [0,1] for simplicity). Let p € IR be given and fixed. To find the value
F*(p) we may proceed in two equivalent (dual) ways as follows. Firstly, note that p represents
the slope of the straight line x — pz (passing through the origin) and that its value remains
constant throughout. To find the infimum over all = € [0,1] in (3.3) we may thus take the
vertical line passing through 0 as the ‘reader’ of the intercepts ¢ produced by x +— pxr+c
when ¢ runs over IR (see Figure 1). Then note that there are those lines x — pr+c¢ which
after starting at 0 (the reader) meet the graph of F' at some point in [0, 1] . Let us denote the
set of all ¢ satisfying this property by A; . Next note that there also are those lines z — pz+c
which after starting at 0 (the reader) do not meet the graph of F at any point in [0,1].
Let us denote the set of all ¢ satisfying this property by A, . The fact is that sup A; equals
inf Ay and their joint value coincides with —F*(p) . This is a (mutually) dual way of looking
at the Legendre transform referred to above. Both claims appear to be evident. Indeed, to see
that sup Ay = —F*(p) one may observe that to each ¢ € A; there corresponds z. € [0, 1]
at which = +— pr+c meets z — F(z) for the first time on [0,1] (when z runs from 0

11



X+ pX+C

-F*(p)

\'4

X

Figure 1. A dual (geometric/analytic) interpretation of the concave conjugate
function F*(p) = inf,[pz—F(z)]. The analogous interpretation holds for the
convex conjugate function Fi(p) = sup,[pz—F(x)] .

to 1). Choosing the largest ¢ in A; thus corresponds to approaching the infimum over all
xz € [0,1] in (3.3) arbitrarily close from above (see Figure 1). On the other hand, to see that
inf Ay = —F*(p) one may argue oppositely and note that to each ¢ € A, there corresponds
no z. € [0,1] at which x +— pr+c meets = +— F(z) on [0,1]. Choosing the smallest ¢ in
Ay thus corresponds to approaching the infimum over all z € [0,1] in (3.3) arbitrarily close
from below (see Figure 1). From these arguments we clearly see that the two values must be
equal indeed. It is also clear that each ¢ can be identified with the straight line x — pr+-c
when the slope p is given and fixed (as well as that these straight lines need to be replaced
by hyperplanes in higher dimensions). In this context there is another useful aspect which we
wish to highlight now. This is the fact clearly seen from Figure 1 that the two vertical lines at
0 and 1 (containing the holding points with x +— px+c at both ends) taken together with
the horizontal line at oo can be viewed as the graph of a (multi-valued) function IT. This
multi-valued function can in turn be obtained as the limit of (single-valued) functions A,, that
lie above F' on [0,1] and tend to oo as n — oo . The point of this approximation is that if
such a function A above F is given itself, then choosing the holding points with the straight
lines = +— pr+c to lie on the graph of A instead of the (limiting) vertical lines at 0 and 1
(on the graph of II'), one obtains a definition of the Legendre transform of F' in the presence
of A. Although we will not make use of this definition below we will see that the formal
replacement of the imaginary (multi-valued) function II with a given (single-valued) function
A plays a helpful role in the formulation and understanding of the duality principle for the
double Legendre transform to be presented below. To this end we now turn to describing a
dual (geometric/analytic) interpretation of the double Legendre transform itself.

12
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Y

Figure 2. A dual (geometric/analytic) interpretation of the concave biconjugate
function G**(p) = inf, sup,[x(p—y)+G(y)] . The analogous interpretation holds
for the convex biconjugate function H..(p) = sup, infy[z(p—y)+H (y)] .

Consider the concave biconjugate function G** defined in (3.5) above (where F' is replaced
by G for notational convenience and D(F') equals [0, 1] for simplicity). Let p € IR be given
and fixed. To find the value G*™(p) we may proceed in two equivalent (dual) ways as follows
(resembling but also differing from the arguments above). Firstly, note that p no longer
represents a slope but the position of the ‘reader’ (i.e. the vertical line passing through p)
having the same role as the vertical line passing through 0 above. To find the infimum over all
x and the supermum over all y € [0,1] in (3.5) we may first fix « € IR that now represents the
slope of the straight line y — x(y—p)+c which figures out in the definition (3.5) after replacing
the original expression z(p—y)+ F(y) with the more intuitive expression F(y)—x(y—p) for
y € [0,1] . Now the rationale of the argument is the same as above with one notable exception:
The slope z is no longer constant but needs to be chosen so to minimise the maximum of
F(y)—x(y—p) over y € [0, 1] . Having understood this difference we can then proceed as before
and note that there are those lines y — xz(p—y)+c which after starting at p (the reader) meet
the graph of G both before 0 and 1 (when y runs from p backwards and forwards). Let us
denote the set of all ¢ satisfying this property by A; . Next note as before that there also are
those lines y — z(p—y)+c which after starting at p (the reader) do not meet the graph of G
before 0 or 1 (in the previous sense). Let us denote the set of all ¢ satisfying this property
by A, . The fact again is that sup A; equals inf A; and their joint value coincides with
G**(p) . This is a (mutually) dual way of looking at the double Legendre transform referred
to above. Both claims can be established in a similar way as for —F*(p) above (see Section
4 below). A crucial difference needs to be remembered, however, and this is that the slope z
is no longer constant but needs to be chosen so to minimise the maximum of F(y)—xz(y—p)
over all y € [0,1] . The result is shown in Figure 2 and the mapping p — G**(p) represents
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the smallest concave function that lies above p — G(p) (recall (3.14) above). The comments
on the hyperplanes (in higher dimensions) and the imaginary (multi-valued) function II carry
over to the present case unchanged, and it is especially the latter (through the change of II to
H ) that is instrumental in revealing the duality principle to be presented next.

4. Duality principle

1. Let G:[0,1] — IR and H :[0,1] — IR be continuous functions satisfying G < H with
G(0) = H(0) and G(1) = H(1), and let p € [0,1] be given and fixed. For z € IR (slope)
and ¢ € [G(p), H(p)] (height) define
(4.1) Cp(x,c) =sup{y €[0,p] : 2(y—p)+c=Fly) }
(42) rp(r,c) =inf{y € [p.1] s 2(y—p)+c= F(y) }

where F' stands for either G or H (with sup® =0 and inf() =1). Given x € IR define
the admissible sets

43 Alw = U ({yel1: &0 <0 <y<rhle.e) <o)}
celG@LHwL {yel0,1]: E(z,c) <y < y(z,c) <z, c) <z, c)

if 2(y'—p)+c<H(Y) forall y € [z, c), 4 (z,c)] }

U{yel0,1]: (z,c) < y(x,c) < rfy(z,c) <y < ri(z,c)
if 2(y—p)+c<H(y) forall y € [r¥(z,c),rh(z,c)] })

(4.4) Al (z) = U ({y €[0,1]: & (z,c) < l(z,c) <y <rg(zr,c) <1l ,C)}
clGELHE] {yelo1]: &(z,c) <y<(zx,c) <rl(z,c) <rfy(zc)
(o) }

U{yel0,1]: & (z,c) < (z,c) <rb(z,c) <y <r
if z(y'—p)+c>G(Y) forall y € [ri(x,c),r

VAN
m*d
=
&

[

if z(y'—p)+c>G(Y) forall y € [¢%(z,c),l
[
(

s
—~
8
)
=
——
N—

as indicated in Figure 3 and Figure 4 respectively. The biconjugate Legendre transform of G
in the presence of H is defined by

(4.5) Gi(p) =inf sup [z(p—y)+G(y)]

T yeAl(x)
and the biconjugate Legendre transform of H in the presence of G is defined by

(4.6) HS(p)=sup inf [z(p—y)+H(y)]

T CUEA(;( )

for p € [0,1]. The inf Ay/sup A; algorithm presented in the final paragraph of Section 3 above
(applied to single-valued functions G and H analogously) provides a close alternative way
for deriving the values (4.5) and (4.6). This is indicated in Figure 3 and Figure 4 respectively.
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To see that the resulting values are the same, consider Figure 3 and note that the straight
line y — x(y—p)+c passing through any given height ¢ (black dot) lying strictly above
the resulting value inf As (the lowest black dot) can be rotated (clockwise or anticlockwise)
until it hits G (at either side of p). The resulting angle of rotation determines the slope
x at which the value of the supremum in (4.5) (taken over the resulting interval containing
the second/third set in the union (4.3) above) coincides with the given height ¢ (showing
that each such height ¢ is attained at some slope z ). Taking the infimum over all x in
(4.5) corresponds to moving the given height ¢ downwards until it reaches the resulting value
inf A5 . Note that it cannot go strictly below inf A, since each straight line passing through a
given height ¢ yielding a non-empty interval in the union (4.3) for some slope x can always be
translated downwards (if needed) to create the same effect as the rotating straight line above.
This shows that the resulting value inf Ay (the lowest black dot) coincides with G3j(p) in
(4.5). Similarly, consider Figure 4 and note that the straight line y — z(y—p)+c passing
through any given height ¢ (black dot) lying strictly below the resulting value sup A; (the
highest black dot) can be rotated (clockwise or anticlockwise) until it hits H (at either side of
p ). The resulting angle of rotation determines the slope = at which the value of the infimum
in (4.6) (taken over the resulting interval containing the second/third set in the union (4.4)
above) coincides with the given height ¢ (showing that each such height ¢ is attained at some
slope x ). Taking the supremum over all = in (4.6) corresponds to moving the given height
¢ upwards until it reaches the resulting value sup A; . Note that it cannot go strictly above
sup A; since each straight line passing through a given height ¢ yielding a non-empty interval
in the union (4.4) for some slope = can always be translated upwards (if needed) to create
the same effect as the rotating straight line above. This shows that the resulting value sup A;
(the highest black dot) coincides with H& (p) in (4.6). With reference to the optimal stopping
game in the proof below we remark that each straight line in the inf Ay/sup A; algorithm
represents the value function associated with the first exit time of the process X from the
interval. Alternatively these straight lines (geodesics) can also be obtained as solutions to the
boundary value problem associated with the infinitesimal generator of the process X on the
interval. These interpretations extend to more general diffusion/Markov processes.

Theorem 4.1 (Duality principle). We have

(4.7) G (p) = Hi(p)
for all p €|0,1] (see Figures 3-6).

Proof. Associate with G and H the optimal stopping game (1.3)+(1.4) where X is
a standard Brownian motion in [0,1] absorbed at either 0 or 1. Since X is continuous
we know by the results in Section 2 that the Stackelberg and Nash equilibria are satisfied in
this setting. In particular, the value of the game is unambiguously defined by (1.5) and this
value satisfies the identities (2.4). Recalling that finely continuous functions for X coincide
with continuous functions (in the Euclidean topology), and that superharmonic/subharmonic
functions for X coincide with concave/convex functions, we will now show that

(4.8) “—_V & HE=V

on [0,1]. Note that after this is done the duality relation (4.7) will follow by combining the
identities (4.8) with the identities (2.4) above.
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p

Figure 3. A dual (geometric/analytic) interpretation of the concave biconjugate
function G7j(p) = inf, SUDye AH () [z(p—y)+G(y)] in the presence of H .

To derive the first identity in (4.8) take any p € (0,1) and set ¢, = Gjf(p) . We claim
that ¢, > V(p) . Clearly, if ¢, = H(p) this is true, so let us suppose that ¢, < H(p). Then
by definition of G7f(p) if we take any ¢ € (c., H(p)) (close to ¢, ) we can find a slope =z
(depending on ¢ ) such that Alf(z) = [¢}(z,c),r};(z,¢)] is a nontrivial interval containing
p . Consider a continuous function F': [0,1] — IR which is linear on (¢%(x,c),r% (z,c)) and
equals H on [0,05(z,c)] U [r%(z,c),1]. Note that F(p) = ¢ by definition of ¢ (z,c) and
™ (x,¢). Since F clearly belongs to Sup|G,H) we see by definition of V that V(p) <
F(p) =c. Since ¢ € (¢,, H(p)) was arbitrary we can conclude that V(p) < ¢, as claimed.

To see that V(p) = ¢, let us assume that V(p) < ¢, . Then by definition of V there
exists F' € Sup|G,H) such that F(p) < ¢.. Let ¢p = sup{y € [0,p] : F(y) = H(y)}
and rp =inf{y € [p,1]: F(y) = H(y) } . Since F is continuous it follows that [{g,rr] is a
nontrivial interval containing p . By definition of Sup[G, H) we know that F' is superharmonic
on [{p,rr] and hence concave on the same interval. Let s be a supporting line (tangent) for
F at p. Set s = sup{y € [0,p] : s(y) = G(y) or s(y) = H(y)} and r, = inf{y €
p,1] = s(y) = G(y) or s(y) = H(y)}. Then by definition of Gj(p) we know that either
s(ls) = G(Ls) or s(rs) = G(rs) . Moreover, since F(p) < ¢, this is also true if we replace
s by s. := s+e for ¢ > 0 sufficiently small. If s.(¢;.) = G({s.) then by definitions of
Sup|G,H) and s. we know that F' is superharmonic on [/, ,p] and hence concave on the
same interval. Since F' is continuous and F(0) = G(0) it follows that F must meet s. at
some point in [ls_,p] . This conclusion contradicts the fact that F' is concave on [y ,p]. If
Se(rs.) = G(rs.) then the same arguments can be applied to F on the interval [p,7.] and
this leads to a similar contradiction. In either case therefore we can conclude that F(p) < c.
cannot be true and hence we must have F(p) = ¢, as claimed.

This shows that the first identity in (4.8) holds. The second identity can be derived in
exactly the same way (or follows by symmetry if we replace G and H by —G and —H
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p

Figure 4. A dual (geometric/analytic) interpretation of the convex biconjugate
function HE (p) = sup, infye 42 (o) [2(p—y)+H(y)] in the presence of G .

respectively). The duality relation (4.7) then follows by combining the identities (4.8) with the
identities (2.4) as stated above. This completes the proof. O

Remark 4.2. The duality relation (4.7) can also be restated by saying that the biconju-
gate Legendre transform of G in the presence of H coincides with the biconjugate Legendre
transform of H in the presence of G . The joint value (4.7) is therefore referred to as the
biconjugate Legendre transform of G and H . It is denoted by

(4.9) p— £¢(p)

for p € [0,1] . The proof above shows that the biconjugate Legendre transform (4.9) coincides
with the value function of the optimal stopping game associated with G and H by means of
standard Brownian motion in [0,1] absorbed at either 0 or 1.

Remark 4.3. It may be noted that certain elements in the statement and proof of the
duality relation (4.7) are reminiscent of Fenchel’s duality theorem [9] stating that the points
having the minimal vertical separation between concave and convex functions are also the
tangency points for the maximally separated parallel tangents (see [17] and [19]). The parallels
between the two theorems appear to be both loose as well as indicative of deeper connections.
Unlike Fenchel’s duality theorem, however, the duality relation (4.7) applies to graphs of a very
general nature and requires no assumption of convexity or concavity.

The duality relation (4.7) extends from (straight lines of) Brownian motion to (geodesics)
of more general diffusion processes using known properties of the fundamental solutions (eigen-
values) to the killed generator equation. Focusing only on the case when the boundaries are
absorbing and leaving other cases to similar arguments this can be done as follows.
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Figure 5. The duality principle for the Legendre transform stating that the
concave biconjugate of G in the presence of H coincides with the convex
biconjugate of H in the presence of G .

2. Let X = (Xy)i>0 be a regular diffusion process in [0,1] absorbed at either 0 or
1. Consider the optimal stopping game where the sup-player chooses a stopping time 7 to
maximise, and the inf-player chooses a stopping time ¢ to minimise, the expected payoff

(4.10)  M)(1,0) =E,[e MG(X,) (<o) + e MH(X,)I[(c<T)+e MK(X,)I(T=0)]

for x € [0,1] where G, H, K : [0,1] — IR are continuous functions satisfying G < K < H
with G(0) = H(0) and G(1) = H(1). Since X is continuous we know by the results in
Section 2 that the Stackelberg and Nash equilibria are satisfied so that the value of the game
is unambiguously defined by

(4.11) V(x) = inf sup M2 (7, 0) = supinf M)(7, o)

g T T

for x € [0,1] with 7p, and op, being Nash optimal stopping times (for fuller details recall
the text following (2.4) above). Let ILx be the infinitesimal generator of X , and let ¢ and
¢ be continuous solutions to (3.20) on [0,1] such that ¢ is increasing with ¢(0) > 0 and
Y is decreasing with (1) > 0. Recall that under regularity conditions we have that Ly is
given by (3.21) above. Recall also that when A =0 we can take ¢ =S and ¢ =1 where S
is the scale function of X . Define

(4.12) Gopi= G0 ()" & GupmGo(-2)™
(4.13) Hoyi=%0(2)" & Hypi=Ho(-2)"

(recall Theorem 3.1 and Theorem 3.2 above).
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Figure 6. The duality principle for the Legendre transform yielding the shortest
path between G and H by (i) depicting the semiharmonic characterisation of
the value function and (ii) embodying the underlying Nash equilibrium.

Theorem 4.4. Consider the optimal stopping game (4.10)+(4.11), and let ¢ and 1 be
the solutions to (3.20) defined above. Then

(4.14) Vip)=inf  sup  [2[£(p)=y]+Cou(v)| ()

T H
yEAL * ()

=sup inf [:C [f (p)—y] +Hyp (Z/)] ¥(p)

x yEAg%w(:p)
(4.15) Vi) =inf sup |2[£(0)+y]+Cun(v) o)

x H
yGpr’(p(I)

— ; »
g ]

for any p € [0,1] given and fized.
Proof. In parallel to (4.12) and (4.13) define

(4.16) Vow =10 (ﬁ)il & Vypi=4o (—%)71-

Then the arguments used in the proof of Theorem 3.2 combined with the arguments used in
the proof of Theorem 4.1 show that the duality relation (4.7) leads to

(4-17) Vi = (G%w)*H*%w = (Hwb)i%w
(4.18) Vi = (Gw,w);};,w = (Hlb,w)iw#‘
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Substituting p = (¢/1¥)"*(¢) and p = (—/¢) ' (q) we see that (4.17) and (4.18) reduce to
(4.14) and (4.15) respectively. Note that y in (4.15) can be taken with the positive sign since
the infimum and supremum are taken over all = € IR (i.e. both positive and negative). This
completes the proof. O

5. Shortest path

Let G:[0,1] — IR and H :[0,1] — IR be continuous functions satisfying G < H with
G(0) = H(0) and G(1) = H(1), let £ be the biconjugate Legendre transform of G and H
defined in Remark 4.2 above, and consider the Euclidean distance in IR? to measure length.

Theorem 5.1. The graph of the mapping

(5.1) p = £¢(p)

represents the shortest path from (0,G(0)) = (0, H(0)) to (1,G(1)) = (1, H(1)) between the
graphs of G and H when p runs from 0 to 1.

Proof. We show that no continuous path between the graphs of G and H can be shorter.
For this, take any continuous function F : [0,1] — IR satisfying G < F < H on [0,1] and
suppose that F(p) # £8(p) for some p € (0,1) . Consider first the case where F(p) > £H(p) .
Then the duality relation (4.7) and the definition of GJ;(p) yield the existence of x € IR such
that the straight line y +— z(y—p)+F(p) meets the graph of H before the graph of G when
y runs from p both backwards to 0 and forwards to 1. Moreover, since F(p) is strictly
larger than £ (p) this is also true if we replace F(p) above with F.(p) := F(p)—e for € >0
sufficiently small. In other words, the the straight line y — z(y—p)+ F.(p) meets the graph
of H before the graph of G when y runs from p both backwards to 0 and forwards to 1.
Since F' € [G,H] on [0,1] it follows that the graph of y +— F(y) must meet the straight
line y — z(y—p)+F:(p) (for the first time) at some (yo,20) € [0,p) x IR when y runs from
p backwards to 0, and likewise the graph of y +— F(y) must meet the same straight line
y — x(y—p)+F-(p) (for the first time) at some (y1,z21) € (p,1]x R when y runs from p
forwards to 1. Since the straight line y +— x(y—p)+F.(p) represents the shortest path from
(v0,20) to (y1,21) (relative to the Euclidean distance in IR?), and F(p) is strictly larger
than F.(p) by construction, we see that the graph of y +— F(y) defines a strictly longer path
on [yo,y1] . This shows that the graph of F cannot represent the shortest path between the
graphs of G and H on [0,1] whenever F(p) > £H(p). The case F(p) < £4(p) can be
ruled out in exactly the same way using the duality relation (4.7) and the definition of HE (p)
instead. In either case therefore it follows that the graph of F' cannot represent the shortest
path from (0,G(0)) = (0, H(0)) to (1,G(1)) = (0, H(0)) between the graphs of G and H
unless F' = £8 as claimed. This completes the proof. [l

Remark 5.2. An interesting (and computationally elegant) feature of the algorithm for the
shortest path obtained in this way is that its implementation has a local character in the sense
that it is applicable at any point in the domain with no reference to calculations made earlier
or elsewhere. In essence this is a consequence of the fact revealed by the duality principle that
finding the shortest path between the graphs of functions is equivalent to establishing a Nash
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equilibrium. The result of Theorem 5.1 extends from (straight lines of) Brownian motion to
(geodesics of ) more general diffusion processes using the methodology described above.

Acknowledgements. The author gratefully acknowledges financial support from (i) the
Centre for the Study of Finance and Insurance, Osaka University, Japan and (ii) the Department
of Mathematical Sciences & Quantitative Finance Research Centre, University of Technology
Sydney, Australia where the present research was initiated (February 2010) and concluded
(June 2010) respectively. The author is grateful to Professor H. Nagai at the former institution
and to Professor A. A. Novikov at the latter institution for the kind hospitality and insightful
discussions. The author is indebted to Professor S. Pickenhain for the valuable comments on
the origins of duality in optimal control (especially [10]) made during the 5th Workshop on
Nonlinear PDEs and Financial Mathematics, University of Leipzig, Germany (March 2010).

References

[1] Bismur, J. M. (1973). Conjugate convex functions in optimal stochastic control. J. Math.
Anal. Appl. 44 (384-404).

[2] BORODIN, A. N. and SALMINEN, P. (2002). Handbook of Brownian motion: Facts and
Formulae. Birkhauser.

[3] DyNkIN, E. B. (1963). The optimum choice of the instant for stopping a Markov process.
Soviet Math. Dokl. 4 (627-629).

[4] DyNkIN, E. B. (1965). Markov Processes. Springer-Verlag.

[5] DyNKIN, E. B. (1969). Game variant of a problem of optimal stopping. Soviet Math. Dokl.
10 (16-19).

(6] DYNKIN, E. B. and YUSHKEVICH, A. A. (1969). Markov processes: Theorems and Prob-
lems. Plenum Press.

[7] EKSTROM, E. and PESKIR, G. (2008). Optimal stopping games for Markov processes.
SIAM J. Control Optim. 47 (684-702).

[8] FENCHEL, W. (1949). On conjugate convex functions. Canadian J. Math. 1 (73-77).
9] FENCHEL, W. (1953). Convex Cones, Sets and Functions. Princeton Univ. Press.

[10] FriEDRICHS, K. (1929). Ein Verfahren der Variationsrechnung das Minimum eines Inte-
grals als das Maximum eines anderen Ausdruckes darzustellen. Nachr. Gdéttingen (13-20).

[11] 110, K. and McKEAN, H. P. JR. (1974). Diffusion Processes and Their Sample Paths.
Springer-Verlag.

[12] MANDELBROJT, S. (1939). Sur les fonctions convexes. C. R. Acad. Sci. Paris 209 (977-
978).

21



[13]
[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

22]

NEUMANN, J. VON (1928). Zur Theorie der Gesellsehaftsspiele. Math. Ann. 100 (295-320).

PESKIR, G. (2007). Principle of smooth fit and diffusions with angles. Stochastics 79
(293-302).

PESKIR, G. (2008). Optimal stopping games and Nash equilibrium. Theory Probab. Appl.
53 (558-571).

PESKIR, G. and SHIRYAEV, A. N. (2006). Optimal Stopping and Free-Boundary Problems.
Lectures in Mathematics, ETH Ziirich. Birkhauser.

ROCKAFELLAR, R. T. (1966). Extension of Fenchel’s duality theorem for convex functions.
Duke Math. J. 33 (81-89).

ROCKAFELLAR, R. T. (1970). Conjugate convex functions in optimal control and the
calculus of variations. J. Math. Anal. Appl. 32 (174-222).

ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press.

SAMEE, F. (2010). On the principle of smooth fit for killed diffusions. Electron. Commun.
Probab. 15 (89-98).

SION, M. (1958). On general minimax theorems. Pacific J. Math. 8 (171-176).

SNELL, J. L. (1952). Applications of martingale system theorems. Trans. Amer. Math.
Soc. 73 (293-312).

Goran Peskir

School of Mathematics

The University of Manchester
Oxford Road

Manchester M13 9PL

United Kingdom
goran@maths.man.ac.uk

22



